James Sturgis’ research group is interested in the dynamics and assembly of membrane proteins. We are interested in how membrane proteins fold and assemble in the membrane to form both stable structures, such as the photosynthetic apparatus, or transient dynamic structures.

To investigate the assembly of membrane proteins we use a combination of different theroetical and experimental techniques. In a series of numerical approaches we are using computer simulations and theoretical analysis to investigate the assembly process at various levels of detail (atomistic, coarse-grained and ultra-coarse grained). While at the experimental level we use spectroscopic, microscopic, molecular biology and synthetic biology methods to analyse the assembly process.

We have a series of biological systems that we investigate using these techniques: AqpZ, the Bacterial photosynthetic apparatus and mitochondrial anion channel, VDAC.

1 – AqpZ assembly

The membrane protein Aquaporin Z (AqpZ), from Escherichia coli forms a tetrameric water channel. However very little is known about the rules that govern membrane protein folding and assembly. We hope to be able to decode some of these rules by examining different steps in the folding of this protein.

Our research focusses on understanding the interactions between the protein and membrane lipids and in particular aspects of the protein surface and the lipid composition that modulate formation of tetrameric complexes and their subsequent assembly into 2D crystals. For this we are using various biochemical and biophysical techniques in the laboratory (fluorescence, FTIR spectroscopy, EM, lipidomics) or in collaboration with leading laboratories around the world (nmr, AFM and single molecule measurements).

AFM image of AqpZ crystals disolving
in a lipid membrane (Coll. S. Scheuring).

2 – Organization of the bacterial photosynthetic apparatus

A larger system we are studying is the bacterial photosynthetic system. This simple system forms specialized membranes composed essentially of 3 to 4 intergal membrane complexes. The different proteins are able to assemble spontaneously into specialise membranes within the bacteria, the morphology and composition of these domains are important for function, and we try to understand why certain proteins assemble into these domains and how their internal structure is determined.

Currently we are using multiple methods to modify the organization of membrane components, using molecular biology tools to modulate expression of the different components in living bacteria and constructing artificial photosynthetic systems bottom up. In both cases we study the organization and function of the system in order to elucidate the links between structure and function and the robustness of this simple integrated biological system.

3 – Understanding the role of the Voltage-Dependent Anion Channel (VDAC) in mitochondrial regulation

VDAC channels are the most abundant proteins in the mitochondrial outer membrane (MOM) and consist of 19-stranded β-barrels that facilitate the passage of ions and metabolites, such as ATP and ADP, in and out of the mitochondria. In addition to their transport function, VDAC channels play a crucial role in various mitochondrial regulatory pathways, interacting with partner proteins involved in processes like apoptosis, neurodegeneration, and calcium homeostasis. Despite their critical importance in mitochondrial regulation, the specific mechanisms of how VDAC channels interact with these partners remain poorly understood.

Our team employs a multidisciplinary approach, combining biochemistry, biophysics techniques (e.g., EPR, AFM), and molecular dynamic simulations to deepen our understanding of VDAC’s role, particularly focusing on the following questions:

a) VDAC Isoform specificity

In mammals, there are three VDAC isoforms—VDAC1, VDAC2, and VDAC3—with approximately 80% sequence similarity and broad, overlapping tissue distribution. While all isoforms function in metabolite and ion transport, their distinct physiological roles remain largely unclear. A key focus of our research is understanding how each isoform selects its protein partners and interacts with lipids, a critical yet poorly understood aspect of their functional diversity and role in mitochondrial physiology.

b) VDAC assemblies and the role of lipids

Mitochondrial physiology is intricately linked to the oligomerization of VDAC. However, the molecular determinants of VDAC oligomerization remain poorly understood. We investigate the effects of lipids of the Mitochondrial Outer Membrane (MOM) on VDAC assemblies, observing that VDAC forms lipid-sensitive clusters, which compaction is regulated by cholesterol. We are using a combination of biochemistry, AFM and molecular dynamics simulations and modeling to understand the molecular forces driving the different isoforms’ assemblies.

We employed an integrative approach, combining molecular dynamics simulations and AFM of VDAC in bilayers with varying lipid compositions, to demonstrate that lipids govern VDAC organization. This underscores the profound impact of the lipid environment on VDAC function, triggering different level of assembly and compaction of VDAC, which can be linked to different function of the protein. This highlights the physiological significance of lipid heterogeneity and changes within biological membranes—whether arising from membrane contacts or pathologies—in modulating VDAC behavior.

c) VDAC interaction with apoptotic proteins

Apoptosis, or “cell suicide,” is a vital process whose dysfunction can lead to various disorders, including cancer and Alzheimer’s disease. Mitochondria-mediated apoptosis involves the permeabilization of the mitochondrial outer membrane (MOM), a key event regulated by Bcl-2 family proteins. In this process, the pro-apoptotic proteins Bax and Bak are activated and integrate into the MOM to form pores. VDAC2 is essential for Bax- and Bak-induced MOM permeabilization, yet the exact mechanism of pore formation remains unclear. Notably, the lack of structural data on the VDAC2-Bax interaction limits our understanding of how this process is regulated, and how other proteins or small molecules might stabilize or disrupt the complex to influence apoptosis. Despite knowing the key players, the precise mechanism behind this critical event in cell fate remains an enigma.

Using a combination of biochemical and biophysical techniques, our team aims to reconstitute and functionnally a

Members

Past Members / Alumni

Past members

Jérôme Hénin (http://www-lbt.ibpc.fr/people/henin)

Pierre Hubert 2004-2014

Katia Duquesne 2009-2012

Cecile Blanchard 2010-2012

 

PhD Students

Batiste Thienpont 2018-2023

Sevde Karatas 2018-2022

Marcel Giansily 2017-2022

Marlon Sidore 2014-2018

Victoria Schmidt 2013-2017 (https://lism.imm.cnrs.fr/member/victoria-schmidt)

Wang Dong 2013-2017

Paul Sawma 2009-2013

Jonathan Khao 2007-2011 (https://clarafi.com/instructors/jonathan-khao)

Astrid Wahl 2006-2010

Camille Mascle-Allemand 2004-2008

Jaime Arce-Lopera 2003-2007

 

Undergraduates


2024 Manon Banegas

2024 Clara Segura

2024 Guillaume Hernitte

2023 Gary Mazoyer

2023 Geoffrey Dassonville

2023 Elissa Chams

2023 Ibrahima Faye

2023 Melanie Lucas Carrico

2023 Raime Zerdoum

2022 Angelica Lopez

2021 Adel Beghiah

2020 Wafa Benmenour

2020 Roumeissa Zouiher

2020 Nafisatou Drame

2019 Jennifer Arrindell

2019 Maxime Armand

2018 Axel Linden

2018 Camille Garcia

2016 Laurie Nigri

2016 Jamal Saad

Publications

2024
Protocol for the production and reconstitution of VDAC1 for functional assays

Grace I Dearden, Varun Ravishankar, Ken-Taro Sakata, Anant K Menon, Lucie Bergdoll

STAR Protocols 5 (2024)10.1016/j.xpro.2024.103240

2023
VDAC interactions with lipids and their effect on isoform specificity

Jean-Pierre Duneau, Maria Queralt-Martin, Lucie Bergdoll

Biophysical Journal 122:373a (2023)10.1016/j.bpj.2022.11.2056

2023
Nanodiscs as a novel approach to resolve inter-protein energy transfer within the photosynthetic membrane of purple bacteria

Olivia Fiebig, Dihao Wang, Dvir Harris, Hila Toporik, Yi Ji, Chern Chuang, Muath Nairat, Ashley Tong, John Ogren, Stephanie Hart, Jianshu Cao, James N. Sturgis, Yuval Mazor, Gabriela Schlau-Cohen

Biophysical Journal 122:232a (2023)10.1016/j.bpj.2022.11.1368

2023
The single residue K12 governs highly sensitive voltage gating of the voltage-dependent anion channel

Van Ngo, Maria Queralt-Martin, Farha Khan, Lucie Bergdoll, Jeff Abramson, Sergey Bezrukov, Tatiana Rostovtseva, Sergei Noskov, David Hoogerheide

Biophysical Journal 122:92a (2023)10.1016/j.bpj.2022.11.697

Show complete publications list

2023
Elucidating interprotein energy transfer dynamics within the antenna network from purple bacteria

Dihao Wang, Olivia Fiebig, Dvir Harris, Hila Toporik, Yi Ji, Chern Chuang, Muath Nairat, Ashley Tong, John Ogren, Stephanie Hart, Jianshu Cao, James Sturgis, Yuval Mazor, Gabriela Schlau-Cohen

Proceedings of the National Academy of Sciences of the United States of America 120:e2220477120 (2023)10.1073/pnas.2220477120

2022
Membrane-mediated membrane protein interactions drive membrane protein organization

Yining Jiang, Batiste Thienpont, James N. Sturgis, Jeremy Dittman, Simon Scheuring

Biophysical Journal 121:433a (2022)10.1016/j.bpj.2021.11.608

2022
Membrane-mediated protein interactions drive membrane protein organization

Yining Jiang, Batiste Thienpont, Vinay Sapuru, Richard Hite, Jeremy Dittman, James Sturgis, Simon Scheuring

Nature Communications 13:7373 (2022)10.1038/s41467-022-35202-8

2022
Experimental evidence for long-distance electrodynamic intermolecular forces

Mathias Lechelon, Yoann Meriguet, Matteo Gori, Sandra Ruffenach, Ilaria Nardecchia, Elena Floriani, Dominique Coquillat, Frederic Teppe, Sébastien Mailfert, Didier Marguet, Pierre Ferrier, Luca Varani, James Sturgis, Jeremie Torres, Pettini Marco

Science Advances 8:eabl5855 (2022)10.1126/sciadv.abl5855

2022
The Single Residue K12 Governs the Exceptional Voltage Sensitivity of Mitochondrial Voltage-Dependent Anion Channel Gating

Van A. Ngo, María Queralt-Martín, Farha Khan, Lucie Bergdoll, Jeff Abramson, Sergey m. Bezrukov, Tatiana K Rostovtseva, David P Hoogerheide, Sergei Yu Noskov

Journal of the American Chemical Society 144:14564-14577 (2022)10.1021/jacs.2c03316

2020
Comparison of the Energy-Transfer Rates in Structural and Spectral Variants of the B800–850 Complex from Purple Bacteria

Ashley Tong, Olivia Fiebig, Muath Nairat, Dvir Harris, Marcel Giansily, Aurélia Chenu, James N. Sturgis, Gabriela Schlau-Cohen

Journal of Physical Chemistry B 124:1460-1469 (2020)10.1021/acs.jpcb.9b11899

2020
High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action

Francesca Zuttion, Adai Colom, Stefan Matile, Denes Farago, Frédérique Pompeo, Janos Kokavecz, Anne Galinier, James N. Sturgis, Ignacio Casuso

Nature Communications 11 (2020)10.1038/s41467-020-19710-z

2019
The lipid environment of Escherichia coli Aquaporin Z

Victoria Schmidt, Marlon Sidore, Cherine Bechara, Jean-Pierre Duneau, James N. Sturgis

Biochimica et Biophysica Acta:Biomembranes 1861:431-440 (2019)10.1016/j.bbamem.2018.10.017

2018
Out-of-Equilibrium Collective Oscillation as Phonon Condensation in a Model Protein

Ilaria Nardecchia, Jeremie Torres, Mathias Lechelon, Valeria Giliberti, Michele Ortolani, Philippe Nouvel, Matteo Gori, Yoann Meriguet, Irene Donato, Jordane Preto, Luca Varani, James N. Sturgis, Marco Pettini

Physical Review X 8:031061 (2018)10.1103/physrevx.8.031061

2018
Modifying styrene-maleic acid co-polymer for studying lipid nanodiscs

Victoria Schmidt, James N. Sturgis

Biochimica et Biophysica Acta:Biomembranes 1860:777-783 (2018)10.1016/j.bbamem.2017.12.012

2017
2017
Lipid perturbation by membrane proteins and the lipophobic effect

James N. Sturgis, Jean-Pierre Duneau, Jonathan Khao

Biochimica et Biophysica Acta:Biomembranes 1859:126-134 (2017)10.1016/j.bbamem.2016.10.014

2016
Lipid Environment of Aquaporin Z

Schmidt Victoria, Sidore Marlon, Carrière Fredéric, Duneau Jean-Pierre, James N. Sturgis

Biophysical Journal 110:252a-253a (2016)10.1016/j.bpj.2015.11.1389

2015
The E.coli Aquaporin Z interface : a puzzle?

Victoria Schmidt, Pierre Hubert, James N. Sturgis

Eur. Biophys. J. 44:S217 (2015)

2014
Transmembrane Recognition of the Semaphorin Co-Receptors Neuropilin 1 and Plexin A1 : Coarse-Grained Simulations

Samia Aci-Sèche, Paul Sawma, Pierre Hubert, James N. Sturgis, Dominique Bagnard, Laurent Jacob, Monique Genest, Norbert Garnier

PLoS ONE 9:e97779 (2014)10.1371/journal.pone.0097779

2014
Ultrafast excited state processes in Roseobacter denitrificans antennae: comparison of isolated complexes and native membranes.

Marco Ferretti, Katia Duquesne, James N. Sturgis, Rienk Van Grondelle

Physical Chemistry Chemical Physics 16:26059-66 (2014)10.1039/c4cp02986k

2014
Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling.

Paul Sawma, Lise Roth, Cécile Blanchard, Dominique Bagnard, Gérard Crémel, Emmanuelle Bouveret, Jean-Pierre Duneau, James N. Sturgis, Pierre Hubert

Journal of Molecular Biology 426:4099-111 (2014)10.1016/j.jmb.2014.10.007

2014
The architecture of Rhodobacter sphaeroides chromatophores

Simon Scheuring, Reinat Nevo, Lu-Ning Liu, Stéphanie Mangenot, Dana Charuvi, Thomas Boudier, Valerie Prima, Pierre Hubert, James N. Sturgis, Ziv Reich

Biochimica biophysica acta (BBA) - Bioenergetics 1837:1263-1270 (2014)10.1016/j.bbabio.2014.03.011

2014
Destabilizing Aquaporin Z Assembly: Effects on Structure, Function and Dynamics

Victoria Schmidt, Pierre Hubert, Valerie Prima, James N. Sturgis

Biophysical Journal 108:499a-500a (2014)

2013
Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells.

Gilles Breuzard, Pierre Hubert, Roqiya Nouar, Tiphany De Bessa, François Devred, Pascale Barbier, James N. Sturgis, Vincent Peyrot

Journal of Cell Science 126:2810-9 (2013)10.1242/jcs.120832

2013
Lateral organization of biological membranes: role of long-range interactions.

Jean-Pierre Duneau, James N. Sturgis

Eur. Biophys. J. 42:843-50 (2013)10.1007/s00249-013-0933-x

2012
Structural properties of the tubular appendage spinae from marine bacterium Roseobacter sp. strain YSCB.

A Bernadac, L-F Wu, C-L Santini, C Vidaud, James N. Sturgis, N Menguy, P Bergam, C Nicoletti, T Xiao

Scientific Reports 2:950 (2012)10.1038/srep00950

2012
Characterization of the motion of membrane proteins using high-speed atomic force microscopy

Ignacio Casuso, Jonathan Khao, Mohamed Chami, Perrine Paul-Gilloteaux, Mohamed Husain, Jean-Pierre Duneau, Henning Stahlberg, James N. Sturgis, Simon Scheuring

Nature Nanotechnology 525-529 (2012)10.1038/nnano.2012.109

2012
Complete Lateral and Angular Diffusion and Protein-Protein Interaction Description of a Membrane Protein

Ignacio Casuso, Jean-Pierre Duneau, Mohamed Chami, Perrine Paul-Gilloteaux, Mohamed Husain, Jonathan Khao, Henning Stahlberg, James N. Sturgis, Simon Scheuring

Biophysical Journal 102:413a-414a (2012)10.1016/j.bpj.2011.11.2261

2012
Draft genome sequence of the purple photosynthetic bacterium Phaeospirillum molischianum DSM120, a particularly versatile bacterium.

K Duquesne, Valérie Prima, B Ji, Z Rouy, C Médigue, E Talla, James N. Sturgis

Journal of Bacteriology 194:3559-60 (2012)10.1128/JB.00605-12

2011
Molecular origins and consequences of High-800 LH2 in Roseobacter denitrificans.

Katia Duquesne, Cecile Blanchard, James N. Sturgis

Biochemistry 50:6723-9 (2011)10.1021/bi200538j

2011
Structure of a protein-detergent complex: the balance between detergent cohesion and binding.

Jonathan Khao, Jaime Arce-Lopera, James N. Sturgis, Jean-Pierre Duneau

Eur. Biophys. J. 40:1143-55 (2011)10.1007/s00249-011-0745-9

2011
Native architecture of the photosynthetic membrane from Rhodobacter veldkampii.

Lu-Ning Liu, James N. Sturgis, Simon Scheuring

Journal of Structural Biology 173:138-45 (2011)10.1016/j.jsb.2010.08.010

2011
Antagonistic regulation of dgkA and plsB genes of phospholipid synthesis by multiple stress responses in Escherichia coli.

Astrid Wahl, Laetitia My, Romain R. Dumoulin, James N. Sturgis, Emmanuelle Bouveret

Mol. Microbiol. 80:1260-75 (2011)10.1111/j.1365-2958.2011.07641.x

2009
High-resolution architecture of the outer membrane of the Gram-negative bacteria Roseobacter denitrificans.

Szymon Jarosławski, Katia Duquesne, James N. Sturgis, Simon Scheuring

Molecular Microbiology 74:1211-1222 (2009)10.1111/j.1365-2958.2009.06926.x

2007
Rows of ATP Synthase Dimers in Native Mitochondrial Inner Membranes

Nikolay Buzhynskyy, Pierre Sens, Valérie Prima, James N. Sturgis, Simon Scheuring

Biophysical Journal 93:2870-2876 (2007)10.1529/biophysj.107.109728

2006
Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror

E. Etienne, P.-F. Lenne, James N. Sturgis, H. Rigneault

Applied optics 45:4497-4507 (2006)10.1364/AO.45.004497

2006
The photosynthetic apparatus of Rhodopseudomonas palustris: Structures and organization.

Simon Scheuring, Rui Pedro Goncalves, Valérie Prima, James N. Sturgis

Journal of Molecular Biology in press:in press (2006)

2001
2000
Proton motive force drives the interaction of the inner membrane TolA and outer membrane Pal proteins in Escherichia coli

E. Cascales, Marthe Gavioli, James N. Sturgis, Roland Lloubes

Molecular Microbiology 38:904-915 (2000)10.1046/j.1365-2958.2000.02190.x

2000
1H-13C nuclear magnetic resonance assignment and structural characterization of HIV-1 Tat protein.

Jean-Marie Peloponese, C. Gregoire, S Opi, E Esquieu, James N. Sturgis, E Lebrun, E. Meurs, C Collette, D Olive, M Aubertin, M Witvrow, C Pannecouque, E de Clercq, Cedric Bailly, J. Lebreton, E. Loret

Comptes rendus de l’Académie des sciences. Série III, Sciences de la vie 323:883-94 (2000)10.1016/S0764-4469(00)01228-2

Hide publications

Collaborations

  • National
    • Olivia du Roure, ESPCI ParisTech
    • Julien Heuvingh, ESPCI ParisTech
    • Clément Campillo, Université d’Evry
    • Guido Pintacuda, CNRS ISA, Lyon
    • Marco Pettini, CNRS CPT, Marseille
    • Ignacio Casuso, INSERM, Marseille
  • International
    • David Kovar University of Chicago, USA
    • Robert Robinson IMCB, Singapore
    • Simon Scheuring, Corning Medical School, USA
    • Janice Robertson, Washington University, USA
    • Gabriela Schlau-Cohen, MIT, USA
    • Alexandra Olaya-Castro, UCL, UK
    • Luca Sapienza, Southampton University, UK

Funding

© 2024 LISM - Laboratoire d'Ingénierie des Systèmes Macromoléculaires - CNRS UMR7255

31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France